

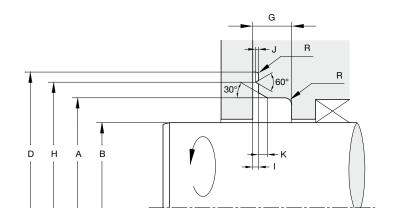
The profile FLS is the best choice for sealing rotating shafts with abrasive media such as in pumps, motors and rotary actuators.

Features

- Wiper-type dynamic (inside) lip.
- Outside flange that stabilizes the seal, prevents seal rotation and resists thermally induced movement.
- Heavy dynamic lip ensures longest life.
- Cantilever spring for low load-high compliance behaviour.
- Many high-resilience energizer options available, including choice of light, medium and heavy loads and NACE for oil field use.
- Available with silicone filling for food and drug applications.

Range of Application

For rotating shaft sealing in abrasive media.


Operating pressure \leq 20 MPa Operating temperature -260 to +315 °C Surface speed \leq 10 m/s Subject to pv guidelines (chapter 4.6.6)

Compounds

The FLS seal is available in a wide range of polymers. These include unfilled PTFE, filled PTFE and many others. See the compound list for further information.

Housing dimensions

Nominal cross-section	Cross- section code	Recommend- ed inner Ø range		Outer Ø	Groove width min.	Radius max.	Flange outer Ø	Nose Ø	Flange width	Nose width	Chamfer width
		Tolerance h10 B (mm)		Tol. H8 A (mm)	G (mm)	R (mm)	Tol. H11 D (mm)	Tol. H11 H (mm)	I (mm)	J (mm)	K (mm)
		≥ (1	, ≤	<i>7</i> . ()	C (iiiii)	()	<i>D</i> ()	()	. ()	O ()	13 (11111)
1/16"	01	3.0	75	B + 2.84	2.4	0.30	B + 7.0	B + 5.0	0.56 +0.08	0.25 +0.10	0.4 - 0.5
3/32"	02	5.0	180	B + 4.52	3.6	0.50	B + 9.0	B + 7.0	0.56 +0.08	0.25 +0.10	0.8 - 1.0
1/8"	03	12.5	250	B + 6.15	4.8	0.50	B + 12.5	B + 10.0	0.66 +0.08	0.30 +0.10	1.0 - 1.2
3/16"	04	22.0	300	B + 9.45	7.1	0.75	B + 17.5	B + 13.5	0.96 +0.08	0.41 +0.10	1.3 - 1.6
1/4"	05	50.0	685	B + 12.12	9.5	0.75	B + 22.0	B + 17.0	1.16 +0.08	0.56 +0.10	1.7 - 2.0

Ordering example

Shaft 70 mm Cylinder bore 76.15 mm

FLS M007000 03 XXX Y

FLS profile

M007000 inner groove diameter in mm times 100

03 cross-section code corresponding to a 6.15 mm groove diameter difference

XXX jacket material

Y spring-energizer material

